Pairwise embedding distance
One way to measure the similarity (or dissimilarity) between two predictions on a shared or similar input is to embed the predictions and compute a vector distance between the two embeddings.[1]
You can load the pairwise_embedding_distance
evaluator to do this.
Note: This returns a distance score, meaning that the lower the number, the more similar the outputs are, according to their embedded representation.
Check out the reference docs for the PairwiseEmbeddingDistanceEvalChain for more info.
from langchain.evaluation import load_evaluator
evaluator = load_evaluator("pairwise_embedding_distance")
evaluator.evaluate_string_pairs(
prediction="Seattle is hot in June", prediction_b="Seattle is cool in June."
)
{'score': 0.0966466944859925}
evaluator.evaluate_string_pairs(
prediction="Seattle is warm in June", prediction_b="Seattle is cool in June."
)
{'score': 0.03761174337464557}
Select the Distance Metric
By default, the evaluator uses cosine distance. You can choose a different distance metric if you'd like.
from langchain.evaluation import EmbeddingDistance
list(EmbeddingDistance)
[<EmbeddingDistance.COSINE: 'cosine'>,
<EmbeddingDistance.EUCLIDEAN: 'euclidean'>,
<EmbeddingDistance.MANHATTAN: 'manhattan'>,
<EmbeddingDistance.CHEBYSHEV: 'chebyshev'>,
<EmbeddingDistance.HAMMING: 'hamming'>]
evaluator = load_evaluator(
"pairwise_embedding_distance", distance_metric=EmbeddingDistance.EUCLIDEAN
)
Select Embeddings to Use
The constructor uses OpenAI
embeddings by default, but you can configure this however you want. Below, use huggingface local embeddings
from langchain_community.embeddings import HuggingFaceEmbeddings
embedding_model = HuggingFaceEmbeddings()
hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embedding_model)
hf_evaluator.evaluate_string_pairs(
prediction="Seattle is hot in June", prediction_b="Seattle is cool in June."
)
{'score': 0.5486443280477362}
hf_evaluator.evaluate_string_pairs(
prediction="Seattle is warm in June", prediction_b="Seattle is cool in June."
)
{'score': 0.21018880025138598}